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Appropriate 2-D motions produce phenomenal im-
pressions of movement in depth (see, e.g., Miles, 1931;
Musatti, 1924; Wallach & O’Connell, 1953). Certain types
of these phenomena have been named structure from mo-
tion (SFM). The questions of how these impressions
arise and what type of geometric structure is derived from
these motions have led to both experimental and theoret-
ical work on depth recovery from motion. The psy-
chophysical research has evaluated the capabilities of the
human visual system in light of the constraints and the
scope of the algorithms devised to derive 3-D geometric
properties from 2-D motions (for a review, see Braun-
stein, 1989; Norman & Todd, 1992). 

Euclidean and Affine Theories of SFM
The analysis of the 2-D motions compatible with the

orthographic projection of rigid 3-D motion allows the re-
covery of metric, affine, or purely local properties of the
projected objects. Ullman’s theorem, for example, demon-
strates that three orthographic views of four points un-
dergoing rigid motion are sufficient to determine the rel-
ative depths of the points uniquely (under the assumption
of rigid motion), and hence the full metric Euclidean struc-
ture thereof (Ullman, 1979). Consistent with this theo-
rem, Ullman proposed that the perceptual recovery of
depth should also be unique and veridical for multiple-
view display and that subjects’ abilities to perform met-
ric judgments in SFM displays should improve with in-
creasing numbers of views (Ullman, 1984). We term this

approach the Euclidean theory of depth recovery from
motion. Some evidence supporting this theory has been
provided by Hildreth, Grzywacz, Adelson, and Inida
(1990; but see also Norman & Todd, 1993).

A competing theory is that projected 3-D shape is not
uniquely recovered by the perceptual system from both
two- and multiple-view displays, but rather is established
only up to a family of affine transformations (Koen-
derink & van Doorn, 1991; Norman & Todd, 1993; Todd
& Bressan, 1990). This family entails linear transforma-
tions that change the z-coordinates but leave the x- and y-
coordinates of the points fixed. We term this approach the
affine theory of depth recovery from motion. Support for
this theory has been provided by the finding that perfor-
mance in psychophysical tasks requiring the knowledge
of Euclidean structural relations is poorer than in tasks
requiring only knowledge of affine properties, and by the
finding that perceptual performance does not improve if
additional views are added to a two-view display (Liter,
Braunstein, & Hoffman, 1993; Todd, Akerstrom, Reichel,
& Hayes, 1988; Todd & Bressan, 1990; Todd & Norman,
1991; but see also Eagle & Blake, 1995; Pollick, 1997). 

Three common properties are shared by both Euclidean
and affine theories of depth recovery from motion: (1) The
ordinal structure of the projected shape is preserved in
the recovered 3-D shape. Although this is an obvious re-
quirement for any Euclidean algorithm, Koenderink and
van Doorn (1991) showed that it also remains true for an
affine algorithm of depth recovery from motion. (2) Lines
and planes that are parallel for the projected shape also
remain parallel for the recovered 3-D shape. Any affine
transformation, in fact, preserves parallelism (see Koen-
derink & van Doorn, 1991). (3) The ordinal structure of
the recovered 3-D shape is internally consistent. This
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follows from the fact that both Euclidean and affine al-
gorithms preserve the ordinal structure of the projected
object. If the symbol “�” is taken to mean “closer in
depth than,” and the symbol “�” is taken to mean “fur-
ther in depth than,” then for points P0, P1, . . . , Pi, . . . , Pn
two conditions must be satisfied according to the usual
definition of ordinal relation: (1) Pi � Pj ⇒ ¬(Pj � Pi),
and (2) (Pi � Pj) ^ (Pj � Pk) ⇒ Pi � Pk. From this defin-
ition it follows that the judgments of the perceived order
of depth cannot be of the sort: (P0 � P1) . . . ^ (Pi � Pi+1)
. . . ^ (Pn � P0). In fact, this would imply that (P0 � Pi ) ^
(Pi � P0). In turn, this violates Condition 1 and makes the
ordinal structure of the recovered 3-D shape internally in-
consistent. 

The purpose of the present paper was to explicitly test
all of these necessary conditions for both Euclidean and
affine theories of the perceptual recovery of depth from
motion. First, however, we discuss the properties of a
local invariant of the first-order optic flow and the ensu-
ing theory that motivates the present experiments.

Local Linear Optic Flow
A generic smooth 3-D surface can be locally approx-

imated by a planar patch. The orientation of a planar sur-
face in 3-D space is usually described in terms of two pa-
rameters: slant (σ ) and tilt (τ ). Slant is defined as the
tangent of the angle between the normal to the patch and
the z-axis; tilt is defined as the angle between the pro-
jection of the normal and the x-axis (Figure 1). The optic
flow produced by the (perspective or orthographic) pro-
jection of a planar surface undergoing a generic 3-D mo-
tion gives rise to a local linear velocity field. The local

instantaneous flow of a continuous velocity field is cus-
tomarily divided into four components: def, curl, transl,
and div. The differential invariants of the optic flow cor-
respond to a pure local shape change without a change in
area (def or shear), a local rotation (curl ), a translation
(transl ), and an isotropic expansion or contraction (div)
(see Koenderink, 1986). 

Both perspective and orthographic analyses interpret
a linear velocity field as the projection of a planar sur-
face moving in 3-D space. The orientation of this planar
surface, however, cannot be uniquely recovered from the
first-order velocity field. For a perspective analysis, this
ambiguity arises from the fact that the projection of planar
patches having different slants and rotating and translat-
ing by different amounts gives rise to identical velocity
fields. A particular case of this situation occurs when the
projected motion is produced solely by a translation (mo-
tion parallax). In this particular case, however, the ori-
entation of the projected patch and its translation veloc-
ity can be uniquely and veridically recovered from the
linear velocity field if the interpretation process assumes
that the angular velocity component is equal to zero (see,
e.g., Braunstein, Hoffman, Shapiro, Andersen, & Bennett,
1987). For an orthographic analysis, on the other hand,
the linear velocity field is always ambiguous. Hoffman
(1982), in fact, has shown that in terms of an orthographic
analysis, the first-order optic flow is sufficient for the
veridical derivation (up to a reflection) of the tilt of the axis
of rotation (τ axis ), the component about the z-axis (ρ) of
the projected angular velocity, and the tilt of a planar
patch (τ ). The first-order optic flow, however, is insuffi-
cient to determine veridically the slants (σ) of a planar

Figure 1. Top: A generic 3-D smooth surface can be locally approximated by a planar patch
with normal N. Bottom left: x, y view of the local patch. Tilt (τ ) is defined as the angle between
the x, y projection of the normal to the patch and the x-axis. Bottom right: y,z view of the local
patch. Slant (σ ) is defined as the tangent of the angle (α ) between the normal to the patch
and the z-axis. 
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patch and the component parallel to the x,y plane (ω) of
the projected angular velocity. Infinite combinations of
σ and ω, in fact, give rise to the same magnitude of def:

def = σω. (1)

The first-order optic flow, moreover, is insufficient to
veridically derive the slant of the axis of rotation (σaxis ).
This parameter of the projected motion is also, in fact, a
function of ω: 

(2)

The veridical recovery of the slant of the axis of rotation,
the slant of a planar patch, and the component parallel to
the x, y plane of the projected angular velocity require
the use of the second temporal derivatives of the velocity
field and the introduction of further assumptions (e.g.,
rigidity, rotation at a constant angular velocity, smooth-
ness of the velocity field) in the interpretation process
(see Bennett, Hoffman, Nicola, & Prakash, 1989; Koen-
derink, 1986; Koenderink & van Doorn, 1975, 1976;
Longuet-Higgins & Prazdny, 1980; Prazdny, 1980; Ull-
man, 1979, 1983).

In summary, a linear velocity field does not allow a one-
to-one mapping between the projected stimulus proper-
ties and the distal parameters (i.e., the local slant, σ, and
the angular velocity, ω). In general, this ambiguity is true
for both perspective and orthographic analyses of the
first-order optic flow.1

Heuristic Derivation of Slant
From First-Order Optic Flow

We propose that even though the first-order velocity
field is not sufficient for uniquely and veridically recov-
ering the projected slant of a planar surface, perceived
slant is nevertheless recovered from the first-order prop-
erties of a velocity field. Evidence supporting this hypoth-
esis has been provided by Domini, Caudek, and Gerbino
(1995) and by Domini and Caudek (in press). Domini
and Caudek presented observers with the orthogonal
projection of oscillating random-dot planar surfaces. A
transparent hemisphere was simulated within a circular
gap of the multiview stimulus displays, and the observers
were asked to manipulate the slant of the base of the hemi-
sphere and its amplitude of rotation so that the base of
the hemisphere appeared to be parallel to the perceived
surface for the whole duration of each oscillation cycle.
Domini and Caudek found that perceived slant magnitudes
were an increasing sublinear function of def and were not
significantly influenced by the simulated slant magnitudes.

We reasoned that if perceived slant of a surface (σ ′ ) is
a nonlinear function of def, the integration of the local
slant magnitudes should produce systematic distortions
in the reconstruction of the global 3-D shape that cannot
be accounted for by either Euclidean or affine theories of
depth recovery from motion. These hypothesized distor-

tions in the recovered 3-D shape can be described by con-
sidering the depth separation of two points on a planar
surface. If σ ′ is a sublinear function of def, the recovered
depth separation of two points of the surface must be re-
lated to the simulated depth separation according to the
following relation (see the Appendix):

z ′ = ωF(σω)z, (3)

where z′ is the recovered depth separation, z is the simu-
lated depth separation, σ and ωare the simulated surface
slant and angular velocity magnitudes, and F(def ) is equal
to the ratio between fsublinear(def ) and def. If f (def ) is a
sublinear function, then F(def ) is a decreasing function
of def. On the basis of Equation 3, therefore, we can for-
mulate three hypotheses that will be directly tested in the
present paper 2 (see also Domini & Braunstein, 1998).

(1) Perceived 3-D shape does not preserve the ordinal
structure of the projected shapes. Let us consider two
rigidly rotating surfaces with different slant magnitudes
(Figure 2, top panel). Let P0 and P1 be two probe dots sim-
ulating the same z-depth magnitude (∆z) relative to Pm
(the point corresponding to the intersection of the two sur-
faces). According to Equation 3, the probe placed on the
surface with the larger simulated slant should be per-
ceived as having the smaller relative z-depth (∆′z1 � ∆′z0).
For two surfaces with slants σ1 � σ0, in fact, it must be
true that F(ωσ1) � F(ωσ0), since ω is constant and F is
a decreasing function. From this it follows that ∆ z1′ � ∆z0′.
Preservation of depth–order relations was tested in Ex-
periments 1 and 2.

(2) Perceived orientation of lines and planes does not
preserve parallelism of the projected shapes. Let us con-
sider two lines passing through two pairs of dots (P0, P1
and P2, P3) placed on the surface arrangement depicted
in Figure 2 (bottom panel). If perceived depth is recov-
ered according to Equation 3, then the perceived z-depth
magnitudes relative to the point Pm will be equal for the
points P0, P1, but different for the points P2, P3. The
points P0, P1, in fact, are located on surfaces with equal
slant magnitudes, whereas the points P2, P3 are located
on surfaces with different slant magnitudes. As a conse-
quence, simulated parallel lines (i.e., the line passing
through the points P0, P1 and the line passing through the
points P2, P3) should be perceived as nonparallel. Preser-
vation of parallelism was tested in Experiment 3.

(3) Perceived ordinal structure is internally inconsis-
tent. Let us consider the corrugated circular crown surface
represented in Figure 3. Each corrugation of the circular
crown surface is made up of two slanted surfaces arranged
as in Figure 2 (top panel). Two probe dots are placed on
the two surfaces of each corrugation at the same relative
z-depth. As noted, Equation 3 predicts a larger recovered
relative-depth magnitude for the probe on the surface with
the smaller simulated slant. By combining the recovered
depth–order relations for the probe pairs placed on each of
the corrugations of the circular crown surface, therefore,

σ ω
ρaxis = 





arctan .
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we should expect a violation of the transitivity principle of
the form P0 � P1 . . . � P7 � P0. Internal consistency of
depth–order judgments was evaluated in Experiment 4.

In conclusion, the heuristic described by Equation 3
allows us to distinguish between two hypotheses con-
cerning the function relating perceived to simulated slant
magnitudes in SFM. According to a first hypothesis, this
function is linear. Any (Euclidean or affine) model of
depth recovery from motion consistent with this first hy-
pothesis, therefore, will preserve the depth–order relations
of the projected image features, will preserve parallelism,
and will recover an internally consistent 3-D structure.
According to a second hypothesis, perceived slant is a
sublinear function of def. For constant simulated angular
velocities, therefore, perceived slant will be a sublinear
function of simulated slant. As noted, any model of depth
recovery from motion consistent with this second hy-
pothesis will not preserve the depth–order relations of the
projected image features, will not preserve parallelism,
and will recover an internally inconsistent 3-D structure. 

EXPERIMENT 1

If perceived slant is a sublinear function of def, it
should be possible to construct stimuli for which the per-
ceived ordinal structure does not preserve the ordinal
structure of the projected object. This hypothesis was
tested by placing probe dots on a dihedral angle made up

of two rigidly oscillating planes rendered by random place-
ment of points on each surface and by manipulating def. 

Method
Subjects. Ten University of Trieste undergraduates participated

in this experiment. All of them were naive to the purpose of the ex-
periment. 

Apparatus. The displays were presented on a high-resolution
color monitor (1,280 � 1,024 addressable locations) under the con-
trol of a Silicon Graphics IRIS Workstation. The screen had a re-
fresh rate of 60 Hz and was approximately photometrically linearized.
An anti-aliasing procedure was used: For point-light locations
falling on a pixel boundary, the screen luminance was proportionally
adjusted in the relevant addressable locations. The graphics buffer
was 8 bits deep (256 gray levels). 

To limit the effectiveness of the flatness cues, subjects viewed
the displays through a viewing tube from a distance of 80 cm. The
viewing tube limited the visible portion to a circular region of about
10º of visual angle. The simulated surfaces did not extend beyond the
viewing area. The apparatus was the same in all experiments. The
displays were viewed with an eyepatch over one eye.

Design. Condition (same vs. different slant) and position (probe
with the largest distance relative to the axis of rotation to the right
or to the left of the stimulus display) were the two independent vari-
ables. Each subject viewed 10 presentations in random order of the
four different stimuli. Eight additional trials were presented at the
beginning of each experimental session in order to familiarize the
subjects with the stimulus displays.

Stimuli. The stimuli consisted of high-luminance dots moving
on a low-luminance background. The horizontal motions of the dots
were computed as simulating an orthographic projection of two sur-
faces oscillating about a fixed vertical axis contained in the projec-
tion plane (Figure 4). Each stimulus display was contained within
a rectangular window measuring 7.9º (width) � 1.29º (height) of
visual angle to prevent changes in the projected contours of the sim-
ulated surfaces from being visible. The two surfaces were simulated
as meeting at a vertical edge, with the position of the axis of rota-
tion bisecting evenly the length of the stimulus window. The simu-
lated surfaces were oriented so as to be parallel to the axis of rota-
tion. The dots were randomly distributed with uniform probability
density over the projection plane (not evenly distributed over the
simulated surfaces). Average dot density was equal to 4 dots/cm2. 

Two conditions were created. In the same-slant condition, at the
midpoint of the oscillation sequence the slants of the two simulated
surfaces were equal to .64 (32.7º); in the different-slant condition,
the slants of the two simulated surfaces were equal to 2.74 and .36
(70º and 20º). The surface with the largest slant was on the right in
half the trials and on the left in the remaining half. Two probe dots
(high-luminance dots with a diameter of 1.5 mm) were positioned
on each surface at different depths relative to the rotation axis. The
simulated relative depths of the probe dots were the same in both
experimental conditions (2.44 and 1.58 cm). As a consequence, the
projected 2-D velocities of the probe dots did not vary across con-
ditions. For the different-slant condition, the probe at a distance of
2.44 cm from the axis of rotation was always positioned on the sur-
face with the largest slant. The probe positioned at the largest depth
was presented on the left surface in half the trials and on the right
surface in the remaining half. The difference of .86 cm in the simu-
lated z-depth magnitudes for the two probe dots was determined by
performing a pilot experiment. The goal of the pilot experiment was
to find a magnitude of a simulated z-depth difference for the two probe
dots (∆ z) that, in the different-slant condition, would give rise to the
perception of the following depth–order relation: z′ � (z + ∆z)′.

The projection of the axis of rotation in the x,y plane bisected
evenly the distance between the two probe dots in both conditions.
In order to keep constant the simulated z-depth magnitudes relative
to the axis of rotation for both conditions, the distance between the

Figure 2. Top: View from above of two planar surfaces with
slants σ0 and σ1. The probe dots P0 and P1 have the same simu-
lated z-depth relative to the point Pm (∆ z0 = ∆ z1). Equation 3 pre-
dicts that ∆ z ′0 � ∆ z ′1. Bottom: View from above of three planar
surfaces with slants σ0, σ1, and σ2 (σ0 = σ1, σ2 � σ1). The simu-
lated z-depth magnitudes relative to the point Pm are the same for
P0 and P1 (∆z0 = ∆ z1), and for P2 and P3 (∆z2 = ∆z3). Equation 3
predicts that ∆ z ′0 = ∆ z ′1 , and that ∆ z ′2 = ∆ z ′3. 
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probe dots was set equal to 6.26 cm in the same-slant condition and
to 5.24 cm in the different-slant condition.

The two surfaces underwent a rigid rotation through an angle of
�5º. Rotation velocity of the two simulated surfaces varied sinu-
soidally with minima at the two extreme values of x. One oscilla-
tion cycle took 16 frames.

Procedure. All subjects were run individually in one session.
They were instructed to judge the depth–order of the two probes. If
they perceived the simulated dihedral angle as convex (concave),
they were required to indicate which of the two probes (right or left)
appeared closer (farther) in depth. In each trial, subjects indicated
their choice with a keypress. Vision was monocular. Head motion
was not restricted. While the experiment was run, the experimental
room was dark. No restriction was placed on viewing time. No
feedback was given until after the experiment was completed. 

Results and Discussion
We transformed the frequency of reporting a correct

response for each condition by an arcsine transformation
(Winer, 1971). A 2 (same- vs. different-slant) � 2 (left
vs. right position) within-subjects analysis of variance
(ANOVA) was run on the arcsine-transformed frequency
data. The effect of the independent variable position was
not significant [F(1,9) = 1.211, n.s.], nor was the inter-
action between condition and position [F(1,9) = .015, n.s.].
The effect of the variable condition, on the other hand, was
significant [F(1,9) = 42.79, p � .001, η2 = .83]: In the
same-slant condition, the depth–order relations were re-
ported with 93.5% (left: 92%, right: 95%) accuracy,
whereas in the different-slant condition, accuracy dropped
to 18.5% (left: 15%, right: 22%). 

Both these results are consistent with the predictions
of the heuristic described by Equation 3. As discussed in
the introduction, in fact, the depth magnitudes recovered

according to Equation 3 preserve the relative-depth rela-
tions for probe dots on surfaces with the same-slant mag-
nitude. On the other hand, when the surfaces have differ-
ent slants, Equation 3 predicts a relative underestimation
of depth for the probe on the most slanted surface. In the
present experiment, this underestimation overcame a depth
difference of 8.6 mm in the opposite direction. In other
words, the probe dot more distant from the axis of rota-
tion appeared to be less distant from the axis of rotation.
The heuristic of Equation 3, therefore, accounts for both
the veridical performance in the same-slant condition
and the below-chance performance in the different-slant
condition. In the different-slant condition, the arcsine-
transformed frequencies differed signif icantly from
chance (the arcsine of .5) [t (9) = �2.95, p � .05].

It should also be noticed that the probe point P1 (sim-
ulated on the most slanted surface) projected with a
larger 2-D velocity than the probe point P0. Had the dif-
ferent projected velocities of the probe points given rise
to a kinetic depth effect, we would have expected the
largest projected 2-D velocity to be associated with the
largest perceived distance from the axis of rotation. In-
stead, the results of this experiment indicate that, in most
of the cases, the probe point P1 was perceived as having
the smallest distance from the axis of rotation. These data,
therefore, indicate that the kinetic depth effect was over-
whelmed by the local differences of the def component
of the velocity field. In conclusion, the data confirm the
hypothesis that motivated the present experiment: The
ordinal structure perceived in SFM displays does not
necessarily preserve the ordinal structure of the projected
objects. 

Figure 3. Schematic representation of the projection on the x, y plane of a circular crown surface.
Each of the eight portions of the surface contains a corrugation made up of two slanted surfaces.
At the bottom are shown two corrugations in a graph in which the ordinate represents the z-map
and the abscissa represents the angle α . A schematic representation of two corrugations in the 3-D
layout is provided at top right. 
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EXPERIMENT 2

The aim of Experiment 2 was to extend the findings of
Experiment 1 by employing smoothly curved surfaces
rather than dihedral angles. In this experiment, the probe
dots were placed at the same simulated distance from the
axis of rotation (hence projecting the same 2-D velocity).

Method
Subjects. Twelve University of Trieste undergraduates partici-

pated in this experiment. All of them were naive to the purpose of
the experiment. 

Apparatus. The apparatus was the same as in Experiment 1.
Stimuli. The stimuli were the same as those of Experiment 1 ex-

cept that the horizontal motions of the dots were computed as sim-
ulating an orthographic projection of a surface with a hyperbolic
profile oscillating about a fixed vertical axis (Figure 5). The depth
of each dot was determined by the equation of a hyperbola. At the
midpoint of each oscillation cycle, the asymptotes of the simulated
surface were slanted by 2.74 and .36 (70º and 20º). The side of the
hyperbola with the greatest slant was either on the left (in half the
trials) or on the right (in the other half ) of the display. The two sides
of the hyperbola were truncated at the same depth at their extremes.
Two probe dots were depicted on the two sides of the hyperbolic
surface at the same z-depth (6 cm) from the axis of rotation. The
two probe dots, therefore, projected the same 2-D velocity. The po-
sition of the axis of rotation bisected evenly the length of the stim-
ulus window. The hyperbolic surfaces underwent a rigid rotation
through an angle of �15º. Rotational speed of the two simulated
surfaces varied sinusoidally with minima at the two extreme values
of x. One oscillation cycle took 20 frames. The stimulus window
measured 13.55º (width) � 1.29º (height) of visual angle.

Design. Each subject viewed 20 presentations in random order of
the two different stimuli (hyperbolic surfaces having the largest

slant either on the right or on the left of the display). Eight additional
trials were presented at the beginning of each experimental session
in order to familiarize the subjects with the stimulus displays.

Procedure. Procedure and instructions were the same as in Ex-
periment 1.

Results and Discussion
In 96.5% (left: 96%, right: 97%) of the cases, when

the hyperbolic surfaces were perceived as concave (con-
vex), subjects judged the probe dots simulated on the
portion of the surfaces with the smaller slant to be closer
(farther away). Subjects’ responses of each were coded 1
if they were consistent with the predictions of Equation 3
and coded 0 otherwise. The arcsine-transformed frequen-
cies of the responses of the subjects were significantly
different from chance (the arcsine of .5) [t (11) = 13.124,
p � .001]. If ordinal structure had been preserved, we
would not have expected a bias in either direction, since
the two probe dots simulated the same relative-depth
magnitudes. On the other hand, the bias exhibited by the
subjects is predicted by the heuristic described by Equa-
tion 3: For probe dots simulating the same z-depth rela-
tive to the axis of rotation, larger magnitudes of relative
depth are expected for the probe dot on the least slanted
surface. It is important to notice, moreover, that in the
present experiment different magnitudes of perceived

Figure 4. View from above of the simulated surface arrange-
ments in the two experimental conditions of Experiment 1. The
probe dots P0 and P1 have different simulated z-depths relative to
the point Pm (∆z0 � ∆z1). 

Figure 5. Schematic representation (top) and view from above
(bottom) of the simulated surface used in Experiment 2. The
probe dots P0 and P1 have the same simulated distance from the
point Pm (∆z0 = ∆z1). Equation 3 predicts that ∆ z0′ � ∆ z1′ .

different-slant condition

same-slant condition
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relative depth were assigned to the probe dots, even though
they projected the same 2-D velocity. This indicates that
even though the kinetic depth effect should have given rise
to a constant amount of perceived relative depth, the dis-
tortions of perceived slant predicted by Equation 3 over-
whelmed this effect, thus preventing the perceptual preser-
vation of the depth–order relations of the projected object.

EXPERIMENT 3

An important property of both Euclidean and affine
theories of depth recovery from motion is that parallelism
is preserved: Lines that are parallel for the projected ob-
ject also remain parallel in the recovered object. Moreover,
parallel lines remain parallel for any affine transforma-
tion. The purpose of Experiment 3 was to investigate the
perceptual preservation of parallelism. In particular, sub-
jects were asked to discriminate between parallel and non-
parallel (virtual) lines defined with respect to simulated
surfaces having either same or different slants.  

Method
Subjects. Nine University of Trieste undergraduates participated

in this experiment. All of them were naive to the purpose of the ex-
periment. 

Apparatus. The apparatus was the same as in Experiment 1.
Design. Surface arrangement (displays made up of surfaces hav-

ing either same or different slant magnitudes) and parallelism (z-
depth locations for the probe dots identifying either truly parallel or
nonparallel lines in 3-D) were the two independent variables. Each
subject viewed 10 presentations of the four different stimuli in ran-

dom order. Eight additional trials were presented at the beginning
of each experimental session in order to familiarize the subjects
with the stimulus displays.

Stimuli. The stimuli were the same as those of Experiment 1 ex-
cept that the horizontal motions of the dots were computed as sim-
ulating an orthographic projection of either two or three connected
surfaces oscillating about a fixed axis (Figure 6). Four probe dots
were depicted on two different surface arrangements specifying
four conditions. 

The same-slant stimuli simulated two surfaces with slants of .36
(20º) (Figure 6). Two pairs—(P0, P1) and (P2, P3)—of probe dots were
depicted on the simulated surfaces with different y-coordinates. The
probe pair (P0, P1) was depicted on the two surfaces at a distance of
1 cm from the rotation axis for both dots. The probe pair (P2, P3)
was depicted on the simulated surfaces either at the same distance
relative to the rotation axis (4 cm; parallel condition) or at different
distances (2.5 and 4 cm; nonparallel condition). 

The different-slant stimuli simulated two surfaces with a slant of
.36 (20º) and one surface with a slant of 3.72 (75º; see Figure 6).
The probe pair (P0, P1) was depicted on the .36 surfaces, whereas
the probe pair (P2, P3) was depicted on the surfaces with slants of
.36 and 3.72. The dots of the probe pair (P0, P1) were simulated with
the same depth relative to the rotation axis (1 cm). The dots of the
probe pair (P2, P3) were positioned either at the same depth relative
to the rotation axis (4 cm; parallel condition) or at different depths
(2.5 and 4 cm; nonparallel condition). The difference of 1.5 cm in
the simulated z-depth magnitudes for the dots of pair (P2, P3) was
determined through a pilot experiment so that the (virtual) lines in
the different-slant nonparallel condition would appear as parallel. 

The stimuli were presented in random order. The position of the
axis of rotation bisected the x-extent of the probe dots. The con-
nected surfaces underwent a rigid rotation through an angle of �3º.
Rotation velocity of the simulated surfaces varied sinusoidally with
minima at the two extreme values of x; one oscillation cycle took
16 frames. 

Figure 6. View from above of the simulated surface arrangements in the four conditions of Experiment 3.
In the same-slant condition, the simulated surfaces have the same simulated slant. In the different-slant con-
dition, the simulated surfaces have different simulated slants. In the parallel condition, the simulated z-depth
magnitudes relative to the point Pm are the same for P0 and P1 (∆z0 = ∆ z1), and for P2 and P3 (∆z2 = ∆z3).  In
the nonparallel condition, the simulated z-depth magnitudes relative to the point Pm are the same for P0 and
P1 (∆z0 = ∆z1) and different for P2 and P3 (∆ z2 �� ∆z3). 
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Procedure. The subjects were told to consider two virtual
straight lines, one of them connecting the dots of probe pair (P0, P1)
and the other connecting the dots of probe pair (P2, P3). They were
told that these virtual lines always projected two parallel lines on the
projection plane, even though they could be parallel or not in 3-D
space depending on the z-coordinates of the probe dots. The sub-
jects were told that the two virtual lines were simulated as parallel
in 3-D space in half the trials. The subjects’ task was to decide, on
each trial, if the two lines appeared to be parallel or not in 3-D
space. Otherwise, the procedure was the same as in Experiment 1.

Results and Discussion
The percentages of correct responses were 83% (same-

slant parallel condition), 78% (same-slant nonparallel
condition), 34% (different-slant parallel condition), and
42% (different-slant nonparallel condition). A 2 (same-
vs. different-slant) � 2 (parallel vs. nonparallel) within-
subjects ANOVA was run on the arcsine-transformed fre-
quency of reporting a correct response in each condition.
The effect of surface arrangement was significant [F(1,8) =
34.21, p � .001, η2 = .81]; in the same-slant condition,
percent correct was 80.5%, whereas in the different-slant
condition, it was 38%. The effect of parallelism was not
significant [F(1,8) = .147, n.s.], and neither was the inter-
action between the two independent variables [F(1,8) =
.361, n.s.]. 

As for the previous experiments, the present findings
are consistent with the predictions of Equation 3. In the
same-slant condition, in fact, the relative-depth magni-
tudes of the probe pairs (P0, P1) and (P2, P3) recovered ac-
cording to Equation 3 were affected by the same amount
of error. As a consequence, Equation 3 predicts a veridi-
cal performance in this condition. Percent correct was, in
fact, 80.5%. In the different-slant condition, on the other
hand, the relative-depth magnitudes of the probe pairs
(P0, P1) and (P2, P3) recovered according to Equation 3
were affected by different amounts of error. As a conse-
quence, Equation 3 predicts a nonveridical performance
in this condition. In fact, percent correct was 35%. In the
different-slant parallel condition, subjects tended to
judge truly parallel virtual lines as nonparallel [t(8) =
�3.07, p � .05]; in the different-slant nonparallel con-
dition, by contrast, performance was at chance [t(8) =
�.87, n.s.]. In conclusion, the data confirm the hypoth-
esis that motivated the present experiment: The paral-
lelism of lines defined by features of the projected objects
is not necessarily preserved in the 3-D shape perceived in
SFM displays. 

EXPERIMENT 4

For both Euclidean and affine theories of depth re-
covery from motion, a necessary condition for a derived
surface z(x,y) is the vanishing of the algebraic sum of
the depth differences between adjacent couples of points
on a close curve in the projection. If this condition is not
satisfied, the points cannot be interpreted as belonging
to a close curve in the projection of a surface. This con-

straint was tested by measuring the perceived depth–order
relations of dot probes positioned on oscillating corru-
gated circular crown surfaces. Since the slant recovered
by the heuristic described by Equation 3 is not linearly
related to projected slant, we hypothesized that the sub-
jects’ depth–order judgments would reveal a bias incom-
patible with an internally consistent 3-D structure. 

Method
Subjects. Twelve University of Trieste undergraduates partici-

pated in this experiment. All of them were naive to the purpose of
the experiment. 

Design. Each subject viewed five presentations in random order
of eight different stimuli (corrugated circular crown surfaces with
a pair of probe dots positioned in correspondence with each of the
eight corrugations of the surface). Eight additional trials were pre-
sented at the beginning of each experimental session in order to fa-
miliarize the subjects with the stimulus displays.

Stimuli. The stimuli were high-luminance dots moving on a low-
luminance background. The horizontal motions of the dots were
computed as simulating an orthographic projection of a corrugated
circular crown surface oscillating about a fixed vertical axis. There
were eight corrugations. Each corrugation was made up of two sur-
faces slanted 2.74 and .36 (20º and 70º) (see Figure 3). The exter-
nal and internal diameters of the circular crown measured 12.49º
and 9.65º of visual angle. Two probe dots were positioned at two con-
tiguous peaks of the corrugation. Eight pairs of probe dots were
used—one for each pair of contiguous planar surfaces making up
the circular crown surface. Only one pair of probe dots was pre-
sented in each trial. 

The dots of the random-dot surface were randomly distributed
with uniform probability density over the projection plane (not
evenly distributed over the simulated surface). Average dot density
was equal to 4 dots/cm2. The circular crown surface underwent a
rigid rotation through an angle of �8º. Rotational speed varied si-
nusoidally with minima at the two extreme values of x. One oscil-
lation cycle took 40 frames. 

Procedure. Procedure and instructions were the same as in Ex-
periment 1.  

Results and Discussion
A one-way within-subjects ANOVA run on the arcsine-

transformed frequencies of reporting a response in the
direction predicted by Equation 3 did not reveal a signif-
icant effect of the tilt of the corrugations [F(7,5) = 1.0,
n.s.]. Regardless of tilt, however, in the 86.04% of the
cases subjects judged as closer (farther away) the probe
simulated on the least slanted of the two sides of the cor-
rugations of the circular crown surface when the corruga-
tions were viewed as concave (convex). This bias was well
above chance [t (11) = 10.188, p � .001]. 

As for Experiment 2, the bias exhibited by the subjects
is consistent with the predictions of Equation 3: For probe
dots simulating the same z-depth magnitude relative to
the axis of rotation, subjects tended to perceive a larger
relative depth for the probe dots on the least slanted sur-
face of the corrugations. Since the probe dots were placed
on a close path on the simulated surface, this bias sug-
gests that the local signing of the perceived depth–order
relations is incompatible with an internally consistent 3-D
structure. 
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GENERAL DISCUSSION

Four general conclusions can be drawn from the results
of the present experiments. (1) The perceptual signing of
the depth–order relations does not necessarily preserve
the ordinal structure of the projected objects. In Experi-
ment 1, in fact, we found that subjects judged veridically
the depth–order relations when two probe dots were placed
on rigidly oscillating surfaces having the same slant
magnitudes, but provided systematically distorted judg-
ments when two probe dots were placed on planar surfaces
having different slant magnitudes. Moreover, in Experi-
ment 2 we found that when asked to judge the relative
depth order of a pair of probe dots, subjects were biased
toward judging as closer the probe dot embedded in the
velocity field with the smaller def, even if the two probe
dots simulated the same depth magnitude (i.e., projected
identical 2-D velocities). (2) Projected lines that are truly
parallel in 3-D space are not necessarily perceived to be
parallel (i.e., perceived 3-D shape does not preserve 3-D
parallelism). In Experiment 3, in fact, we found that sub-
jects veridically discriminated parallel from nonparallel
(virtual) lines connecting four probe dots in 3-D space
when the probe dots were simulated as lying on planar
surfaces with the same slant. Conversely, subjects were
not able to perform the experimental task at better than
chance level when the probe dots were placed on rigidly
oscillating surfaces with different slants. (3) The integra-
tion of the local judgments of depth–order relations along
a closed path does not necessarily vanish (i.e., perceived
3-D shape is not internally consistent). In Experiment 4,
in fact, we found that when asked to judge the relative
depth order of pairs of probe dots, subjects were biased
toward judging as closer the probe dot embedded in the
velocity field with the smaller def, even if the two probe
dots simulated the same depth magnitude. Since the pairs
of probe dots were positioned on a closed path on the sim-
ulated 3-D surface, this bias made the local judgments of
the depth–order relations inconsistent with the proper-
ties of a 3-D shape derived by any Euclidean or affine
model of depth recovery from motion. (4) The perceived
relative-depth magnitudes of probe dots in SFM displays
do not depend solely on their projected 2-D velocities. In
Experiments 2 and 4, in fact, we found that subjects re-
liably associated different relative-depth magnitudes
with probe dots projecting the same 2-D velocity. More-
over, in Experiment 1 we found that smaller relative-
depth magnitudes were associated with probe dots pro-
jecting larger 2-D velocities. These findings suggest,
therefore, that the perceived relative-depth magnitude of
a target point in an SFM display should not be understood
as a linear function of its projected 2-D velocity, but rather
as a function of the def component of the velocity field
constituting the projected 2-D velocity of the target point.

Especially troublesome for any Euclidean or affine
model of depth recovery from motion are the results of
Experiment 4. These results, in fact, suggest that per-
ceived depth–order relations are internally inconsistent,

thus making the properties of the perceived 3-D shape
incompatible with the properties of both Euclidean or
affine geometries. Other evidence besides the present re-
sults suggests that perceived 3-D shape is not internally
consistent. In the shape-from-shading literature, a simi-
lar result has been reported by Todd and Reichel (1989).
In the SFM literature, Domini and Braunstein (1998) ob-
tained a similar result in a study of perceived depth. Do-
mini and Braunstein placed two pairs of probes—(P0, P1)
and (P2, P3)—on different regions of a curved surface
and predicted that judged depth separation would vary
with the mean slant of the regions on which the probes
were placed for constant simulated depth separations and
constant simulated angular velocities. In their stimuli,
the pairs of dots (P0, P1) and (P2, P3) had the same depth
separation, as did (P1, P2) and (P3, P0). However, the pairs
(P0, P1) and (P2, P3) lay on patches having different
slants, whereas the pairs (P0, P3) and (P1, P2) lay on
patches having the same slants. They found that subjects
veridically judged the perceived depth separations of the
pairs (P0, P3) and (P1, P2) to be the same since both pairs
lay on regions of the curved surface with identical slants.
However, subjects mistakenly judged the perceived
depth separations of the pairs (P0, P1) and (P3, P2) to be
different since both pairs lay on regions of the curved
surface with different slants. Therefore, the sum z01′ + 
z12′ was not equal to z23′ + z30′ , since z01′ � z23′ and z12′ = z30′ .
Consistent with the findings of our Experiment 4, hence,
Domini and Braunstein found that the metric judgments
were internally inconsistent since the algebraic sum of
the depth judgments along a closed path was not zero.

The present results are consistent with the view that
human perception of SFM is based on an analysis of the
first-order optic flow (e.g., Todd & Bressan, 1990; Todd
& Norman, 1991; Todd et al., 1988). Our results, however,
suggest that the perceptual analysis of the first-order
optic flow is not necessarily veridical. Whereas the psy-
chophysical tasks employed in the present research could
be performed veridically by using solely the first-order
relations of the optic flow, we found that perceptual per-
formance was systematically distorted. These systematic
distortions have been interpreted as the consequence of
a heuristic (rather than a geometrically correct) analysis
of the first-order optic flow. 

The hypothesis that the perceptual system makes use
of specific heuristic processes to derive 3-D motion and
shape from moving 2-D images has recently been proposed
by several investigators (Braunstein, 1994; Caudek &
Proffitt, 1993; Domini & Caudek, in press; Domini,
Caudek, & Proffitt, 1997; Liter & Braunstein, 1998; Liter
et al., 1993; Pollick, Nishida, Koike, & Kawato, 1994).
In our previous research, we showed that many aspects of
perceived SFM may be accounted for by a heuristic analy-
sis based on def. Domini et al. (1997) found that the vari-
ance of the deformation of the individual triplets of image
features3 influences the discrimination between rigid and
nonrigid motion. Displays with a low variance of the de-
formation tended to be judged as rigid, and those with a
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high variance of the deformation tended to be judged as
nonrigid, regardless of whether they simulated a mathe-
matically correct projection of a rigid motion or not. In an-
other set of experiments, Domini et al. (1997) found that
regardless of the magnitudes of simulated angular rota-
tion (in multiview displays), perceived rotation was a
monotonically increasing function of def. Domini, Cau-
dek, Turner, and Favretto (1998) found that the judg-
ments of “constant” or “variable” angular velocity were
only slightly influenced by the projected angular veloc-
ities, but were greatly affected by the variations of def.
Caudek and Domini (in press) found that the perceived
slant of the axis of rotation was influenced by the ratio
between def and the component of the global velocity
vector parallel to the image plane. When this ratio was
held constant in each frame transition of the stimulus se-
quence, the stimuli tended to be judged as fixed-axis ro-
tations. Conversely, when the ratio varied, the stimuli
tended to be judged as nonfixed-axis rotations. These re-
lations held regardless of whether the stimuli simulated
fixed-axis rotations or not. The present experiments
were intended to contribute to this body of research by
showing how a heuristic analysis deriving perceived sur-
face slant from the information available in two views is
capable (for the tasks and within the stimulus parameters
used here) of accounting for both veridical performance
and systematically distorted depth–order judgments. 

It is important to point out that the violations of Eu-
clidean and affine properties previously highlighted have
been found in very restrictive stimulus conditions: SFM
displays in which texture density was controlled and all
other cues to depth were removed. Moreover, our stimuli
simulated small angular rotations, thus preventing the
second-order properties of the optic flow from being per-
ceptually salient. The present findings, therefore, cannot
be generalized beyond the specific stimulus conditions
studied here. It remains an issue for future research to
establish whether or not the perceptual derivation of 3-D
shape preserves the Euclidean and affine properties for
full-cue conditions and large displacements between the
observer and distal objects. An alternative interpretation
of the present findings, in fact, could attribute the sub-
linear mapping between def and surface slant to the pres-
ence of a variety of interfering sources of information. In
our displays, several cues beyond the velocity gradients
could have contributed to perceived 3-D shape (e.g.,
cues to flatness provided by the homogeneous texture
density, accommodation cues, and such top-down influ-
ences as, perhaps, a cognitive default toward vertical sym-
metry of 3-D shape). As a consequence, one might argue
that the apparent sublinearity found in the previous ex-
periments could reside in systems beyond the SFM system,
as, for example, a more general slant perception mecha-
nism that combines all sources of information specifying
3-D shape.4 Germane to this issue is a recent contribution
provided by Norman, Todd, Perotti, and Tittle (1996),

who found, however, that the Euclidean properties are
also perceptually distorted in the case of full-cue environ-
ments providing converging sources of information about
3-D shape. 
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NOTES

1. The scope of the present investigation is restricted to the
case of an orthographic projection since any perspective pro-
jection can be locally approximated by an orthographic projec-
tion. 

2. In the present experiments, we did not directly test the
model σ ′ = fsublinear(def ) since we didn’t manipulate ω. The
scope of the present investigations was restricted to the study of
the implications of this model. 

3. The velocity vectors associated with three points provide
the minimum conditions for computing def.

4. For the issue of information integration in depth perception,
see, for example, Cutting, Bruno, Brady, and Moore (1992).

APPENDIX

A planar surface can be described as

f (x,y) = g1x + g2 y + d, (A1)

where g1 and g2 are the two components of the depth gradient
of the plane in the x and y directions. The orientation of a planar
patch in 3-D space can be described in terms of its slant (σ) and
tilt (τ ). Slant is defined as the tangent of the angle between the
line of sight (i.e., the z-axis) and the normal to the patch. Tilt is
defined as the tangent of the angle between the projection of the
normal to the patch and the x-axis. Slant and tilt can be calcu-
lated as a function of the two components of the depth gradient
g1 and g2:

σ = �g�2
1�+� g�2

2�, τ = . (A2)

Previous empirical evidence suggests that the perceived slant
(σ ′ ) of a rotating planar surface is a monotonically increasing
function of def and that tilt (τ ′ ) is correctly derived (Domini et al.,
1995, and Domini and Caudek, in press): 

σ ′ = f (def ); (A3)

τ ′ = τ. (A4)

In this Appendix, we will consider the implications that these hy-
potheses have for the derivation of depth separation of two dots
located on a planar surface. The first point P0 will be located at
the origin of a Cartesian system, and a second point P1 will have
a generic position (x, y, z). There are infinite planar surfaces
passing through the points P0 and P1. Each of these surfaces is
defined by the equation:

z = g1x + g2 y. (A5)

By combining Equations A2 we obtain

σ = |g1|�1� +� τ� 2�. (A6)

Since tilt is defined as the ratio between g2 and g1, and the slant
is defined as the sum of the square of the two components of the
def gradient, the separation in depth between the points P0 and
P1 becomes

(A7)

By taking into account Equations A3 and A4, the derived sep-
aration in depth can be expressed as function of def, the simulated
depth separation, and the angular velocity ω: 

z′ = zω . (A8)

In conclusion, if the function f (def ) is a sublinear function
of def, then the ratio between f (def ) and def is a decreasing
function (F(def )) of def. Equation A8 can be therefore rewrit-
ten as

z′ = zωF(def ). (A9)
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